پروژه فازی
پروژه فازی در یک فایل ورد آماده برای شما دانشجویان عزیز تهیه شده است در سایت دانشکده ها برای دانلود این مقاله کامل بایست مبالغی را پرداخت کنید تا بتوانید فایل کامل را دانلود کنید
ما بطور نمونه قسمتی از متن را درون این پست قرار می دهیم تا بعد از مطالعه خرید اینترنتی خود را انجام دهید
پروژه فازی
1.2- الگوریتمk-means Hard الگوریتم k-means،الگوریتمی است که n نمونه داده را بر پایه ویژگی هایشان به c قسمت (c<n) خوشه بندی می کند.
الگوریتم k-means روال هایی بر پایه نمونه اولیه هستند که فاصله بین نمونه های اولیه و دیگر داده ها را به وسیله ساختار یک تابع هدف مینیمم می کند[7].بعبارتی دیگر هدف الگوریتم این است که واریانس درون خوشه ای کل ،یا تابع مربع خطا را مینیمم سازد.این الگوریتم در سال 1956 معرفی شد.
روال کلی الگوریتم بدین صورت می باشد که :
- تعداد خوشه ها را ، k در نظر بگیرید.
- به طور تصادفی k خوشه تولید کنید و مراکز خوشه ها را تعیین نمایید.یا به طور مستقیم، k نقطه رندم را به عنوان مراکز خوشه ها تولید کنید.
- در مجموعه داده،هر نمونه داده را به نزدیکترین مرکز کلاسترآن نسبت دهید.
- دوباره مراکز خوشه های جدید را بدست آورید.
- دو مرحله قبل را تا زمانیکه همگرایی مناسب حاصل شود(تفاوتی در دو خوشه بندی متوالی وجود نداشته باشد)،تکرار نمایید.
الگوریتم بالا را می توان بصورت ذیل نیز شبیه سازی نمود. var m = initialCentroids(x, K);
var N = x.length;
while (!stoppingCriteria) {
var w = [][];
// calculate membership in clusters
for (var n = 1; n <= N; n++) {
v = arg min (v0) dist(m[v0], x[n]);
w[v].push(n);
}
// recompute the centroids
for (var k = 1; k <= K; k++) {
m[k] = avg(x in w[k]);
}
}
return m;
الگوریتم k-Means Hard(سخت) فرض می کند که مرکز خوشه مشخص است و یک کلاس بندی سخت را اجرا می کند که هر داده به یک کلاس تعلق دارد یا ندارد.بنابراین مقدار عضویت به یک کلاس ،یکی از مقادیر 0 یا 1 می باشد.
چکیده پروژه فازی
چکیده پروژه فازی خوشه بندی روشی است که داده های یک مجموعه داده را به گروه یا خوشه تقسیم می کند . از مرسوم ترین روش های خوشه بندی،الگوریتم های خوشه بندی k-Means وfuzzy k-Means می باشند.
این دو الگوریتم فقط روی داده های عددی عمل می کنند و به منظور رفع این محدودیت، الگوریتم های k-Modes و fuzzy k-Modes ارائه شدند که مجموعه داده های گروهی (دسته ای) را نیز خوشه بندی می کنند.
با این وجود، این الگوریتم ها ،شبیه همه روال های بهینه سازی دیگر که برای مینیمم عمومی یک تابع جستجو می کنند، احتمال گیر افتادن در یک مینیمم محلی وجود دارد.
به منظوردستیابی به جوبب بهینه عمومی ، الگوریتم های تکاملی مانند ژنتیک و جدول جستجو با الگوریتم های مذکور ترکیب می شوند. در این پژوهش، الگوریتم ژنتیک ، GA، را با الگوریتم fuzzy k-Modes ترکیب شده ،بطوریکه عملگر ادغام به عنوان یک مرحله از الگوریتم fuzzy k-Modes تعریف می شود.
آزمایش ها روی دو مجموعه داده واقعی انجام شده است تا همراه با مثال کارایی الگوریتم پیشنهادی را روشن نماید.
مقدمه پروژه فازی
به عنوان یک ابزار اولیه در داده کاوی[1] ،تجزیه و تحلیل خوشه ، که تجزیه و تحلیل سگمنت نیز نامیده می شود،روشی است که داده ها را به گروه هایی همگن تحت عنوان خوشه تقسیم می کند.در چنین روشی داده های موجود در یک کلاستر یا خوشه خیلی شبیه به هم و داده ها ی کلاستر های مختلف خیلی متفاوت نسبت به هم هستند.اغلب، شباهت بر مبنای معیار فاصله می باشد.
آنالیز خوشه،خوشه بندی، تکنیک عمومی برای آنالیز داده های آماری می باشد که در بسیاری زمینه ها مانند یادگیری ماشین ، داده کاوی ، شناسایی الگو و آنالیز تصویر کاربرد دارد.در کنار اصطلاح خوشه بندی داده (یا فقط خوشه بندی)،بعضی اصطلاحات دیگرنیزهمانند کلاس بندی اتوماتیک[2] ،طبقه بندی عددی[3]، آنالیز نوع شناسی[4] ، با معنای مشابه استفاده می شود[1].
به طور کلی ،یک الگوریتم خوشه بندی خوب معمولا برای طراحی شامل چهار فاز ذیل را شامل می شود:1- نمایش داده[5]2- مدل کردن[6].3- بهینه سازی[7].4- اعتبار سنجی[2][8] ..
فاز نمایش داده، تعیین می کند که چه نوعی از ساختارهای خوشه می تواند داده ها را شناسایی کند.سپس فاز مدلینگ ضوابط و معیار ها را برروی ساختار تعریف می کند بطوریکه که ساختارها ی گروه های مطلوب را از موارد نامطلوب مجزا می کند.در فاز مدلینگ ، در طول جستجو برای ساختار های مخفی در داده ،یک معیار کیفیت مانند معیار بهینه سازی یا معیار تقریب تولید می شود. بعبارتی دیگرفاز بهینه سازش،ساختار های موثرتر و بهینه تر را انتخاب میکند. از آنجا که فرآیند خوشه بندی ،یک فرایند بدون سرپرستی است فاز اعتبار سنجی خیلی ضروری است تا نتایج تولید شده به وسیله الگوریتم خوشه بندی ارزیابی شوند.
فهرست
چکیده
- مقدمه (3)
- مروری بر روش های قبل (7)
1.2 – الگوریتمk-Means Hard (7)
1.1.2 – مثالی عددی از الگوریتم k-Means (9)
2.2- الگوریتم Fuzzy c-Means (13)
3.2- الگوریتم Hard k-Modes (15)
4.2- الگوریتم fuzzy k-Modes (18)
3- الگوریتم پیشنهادی : genetic fuzzy k-Modes (21)
- نتایج آزمایش (25)
- نتیجه گیری (32)
پیوست – کد برنامه
مراجع
دیدگاهها
هیچ دیدگاهی برای این محصول نوشته نشده است.